18.06 MIDTERM 1 - SOLUTIONS

PROBLEM 1

(1) Use Gaussian elimination to put the matrix $A=\left[\begin{array}{cccc}1 & 0 & 2 & 0 \\ -1 & 2 & -2 & -1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2\end{array}\right]$ in row echelon form.

Show all your steps!
(10 pts)

Solution: Using Gaussian elimination we get:

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
-1 & 2 & -2 & -1 \\
0 & -2 & 0 & 0 \\
0 & 0 & 0 & -2
\end{array}\right] \xrightarrow{r_{2}+r_{1}}\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 2 & 0 & -1 \\
0 & -2 & 0 & 0 \\
0 & 0 & 0 & -2
\end{array}\right] \xrightarrow{r_{3}+r_{2}}\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 2 & 0 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & -2
\end{array}\right] \xrightarrow{r_{4}-2 r_{3}}\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 2 & 0 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so:

$$
U=\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 2 & 0 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(2) Use part (1) to write $A=L U$, where L is lower triangular and U is upper triangular.

Then express L as a product of elimination matrices $E_{i j}^{(\lambda)}$ for various $i>j$ and numbers λ. (10 pts)

Solution: We can rewrite the row operations in part (1) as multiplications by elimination matrices. The first step is given by $E_{21}^{(1)}$, the second by $E_{32}^{(1)}$ and the third by $E_{43}^{(-2)}$. Thus:

$$
E_{43}^{(-2)} E_{32}^{(1)} E_{21}^{(1)} A=U
$$

By using $\left(E_{i j}^{(\lambda)}\right)^{-1}=E_{i j}^{(-\lambda)}$ we get:

$$
A=E_{21}^{(-1)} E_{32}^{(-1)} E_{43}^{(2)} U
$$

hence:

$$
L=E_{21}^{(-1)} E_{32}^{(-1)} E_{43}^{(2)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

(3) Find a linear combination of the columns of A which is $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$. Hint: the answer to (1) may help.

Solution: Since U is obtained from A by row operations, it suffices to solve the problem for U. By inspection, it's easy to see that the third column of U is equal to twice its first column. Hence the same is true for A :

$$
(\text { third column })-2(\text { first column })=0
$$

(4) Explain why for any 4×4 matrix X, the product $A X$ cannot be invertible.

Solution: By part (3), the columns of A are linearly dependent (since the third column is a linear combination of the first column), so they span a vector space of dimension at most $3<4$. Since the columns of $A X$ are linear combinations of the columns of A, we conclude that the columns of $A X$ also span vector space of dimension at most $3<4$. So $A X$ cannot be invertible, since invertible matrices have full dimensional column space.

PROBLEM 2

Consider the system of equations:

$$
\left\{\begin{align*}
a-2 b+6 c & =1 \tag{*}\\
-2 a+3 b-11 c & =-3
\end{align*}\right.
$$

(1) Write the system as $A\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\mathbf{b}$ for a suitably chosen 2×3 matrix A and 2×1 vector \mathbf{b}.

Solution:We can rewrite the system of equations as:

$$
\underbrace{\left[\begin{array}{ccc}
1 & -2 & 6 \\
-2 & 3 & -11
\end{array}\right]}_{A}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\underbrace{\left[\begin{array}{c}
1 \\
-3
\end{array}\right]}_{\mathbf{b}}
$$

(2) Use Gauss-Jordan elimination to put A from part (1) in reduced row echelon form.

Show all your steps! Hint: we recommend you actually do Gauss-Jordan elimination on the extended matrix $[A \mid \mathbf{b}]$; it's a little bit more work, but it will pay off in part (4).
(10 pts)

Solution: First add twice row 1 to row 2:

$$
\left[\begin{array}{ccc|c}
1 & -2 & 6 & 1 \\
-2 & 3 & -11 & -3
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc|c}
1 & -2 & 6 & 1 \\
0 & -1 & 1 & -1
\end{array}\right]
$$

Then multiply row 2 by -1 , to get all pivots equal to 1 :

$$
\left[\begin{array}{ccc|c}
1 & -2 & 6 & 1 \\
0 & -1 & 1 & -1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc|c}
1 & -2 & 6 & 1 \\
0 & 1 & -1 & 1
\end{array}\right]
$$

Finally, add twice row 2 to row 1 :

$$
\left[\begin{array}{ccc|c}
1 & -2 & 6 & 1 \\
0 & 1 & -1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc|c}
1 & 0 & 4 & 3 \\
0 & 1 & -1 & 1
\end{array}\right]
$$

(3) Write down the vector(s) in a basis for the nullspace of A. What is the dimension of this nullspace? Explain how you know!
(10 pts)

Solution: The nullspace is unaffected by Gauss-Jordan elimination, so it is the set of vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ such that:

$$
\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=0 \quad \Leftrightarrow \quad\left\{\begin{array}{l}
a=-4 c \\
b=c
\end{array}\right.
$$

The pivot variables are a and b, and the free variable is c. Recall that a basis vector is given by setting c equal to 1 , and using the equations above to solve for a and b :
a basis vector of $N(A)$ is $\left[\begin{array}{c}-4 \\ 1 \\ 1\end{array}\right]$

Therefore, the dimension of $N(A)$ is 1 .
(4) What is the general solution of the system (*)?
(10 pts)

Solution: A particular solution can be obtained by setting the free variable c equal to 0 , and solving for the pivot variables:

$$
\left\{\begin{array}{c}
a-2 b=1 \tag{*}\\
-2 a+3 b=-3
\end{array}\right.
$$

You can solve this 2×2 system in a number of ways (including back substitution) and we notice that $a=3, b=1$ is the solution. Equivalently, if you did Gauss-Jordan for the extended matrix in part (2), then the system is equivalent to:

$$
\left\{\begin{array}{r}
a+4 c=3 \tag{**}\\
b-c=1
\end{array}\right.
$$

Setting the free variable $c=0$ gives you, yet again , $a=3, b=1$. Hence a particular solution of the equivalent systems $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ is:

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

The general solution is given by adding the particular solution to an arbitrary element of the nullspace:

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+\alpha\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]
$$

for any number α.

PROBLEM 3

(1) Let V be the following vector subspace of \mathbb{R}^{2} :

$$
V=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { such that } 3 x+4 y=0\right\}
$$

Find a basis for $W=V^{\perp}$ (in other words, W is the orthogonal complement of V). (5 pts)

Solution: By the very definition of the vector space V, any vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ is orthogonal to the vector $\left[\begin{array}{l}3 \\ 4\end{array}\right]$, since:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
4
\end{array}\right]=3 x+4 y=0
$$

We conclude that a basis of W is $\left[\begin{array}{l}3 \\ 4\end{array}\right]$.

In what follows, you may use the formula $P_{C(A)}=A\left(A^{T} A\right)^{-1} A^{T}$ for the projection matrix onto the column space $C(A)$ of any matrix A

(2) Compute the projection matrices P_{V} and P_{W} onto the subspaces from part (1). (10 pts)

Solution: We need matrices A and B whose column spaces are the vector spaces V and W, respectively. Since the vector space W is one-dimensional and spanned by the vector $\left[\begin{array}{l}3 \\ 4\end{array}\right]$, the natural candidate is:

$$
B=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

Meanwhile, the vector space V is one dimensional (a line in the plane), so we must choose a single non-zero vector in V. One way to do so is to set one of the variables x, y equal to any number, and then solve the equation $3 x+4 y=0$ for the other variable. So we could say that V is spanned by the vector $\left[\begin{array}{c}4 \\ -3\end{array}\right]$. Hence we can take:

$$
A=\left[\begin{array}{c}
4 \\
-3
\end{array}\right]
$$

Then we can calculate:

$$
\begin{aligned}
& P_{V}=A\left(A^{T} A\right)^{-1} A^{T}=\frac{1}{25}\left[\begin{array}{cc}
16 & -12 \\
-12 & 9
\end{array}\right] \\
& P_{W}=B\left(B^{T} B\right)^{-1} B^{T}=\frac{1}{25}\left[\begin{array}{cc}
9 & 12 \\
12 & 16
\end{array}\right]
\end{aligned}
$$

(3) Compute $P_{V} P_{W}$ and $P_{W} P_{V}$, where P_{V} and P_{W} are as in part (2).

Solution: It is straightforward to compute:

$$
\begin{aligned}
& P_{V} P_{W}=\frac{1}{25}\left[\begin{array}{cc}
16 & -12 \\
-12 & 9
\end{array}\right] \frac{1}{25}\left[\begin{array}{cc}
9 & 12 \\
12 & 16
\end{array}\right]=\frac{1}{625}\left[\begin{array}{cc}
16 \cdot 9-12 \cdot 12 & 16 \cdot 12-12 \cdot 16 \\
-12 \cdot 9+9 \cdot 12 & -12 \cdot 12+9 \cdot 16
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& P_{W} P_{V}=\frac{1}{25}\left[\begin{array}{cc}
9 & 12 \\
12 & 16
\end{array}\right] \frac{1}{25}\left[\begin{array}{cc}
16 & -12 \\
-12 & 9
\end{array}\right]=\frac{1}{625}\left[\begin{array}{cc}
9 \cdot 16-12 \cdot 12 & -12 \cdot 9+9 \cdot 12 \\
16 \cdot 12-12 \cdot 16 & -12 \cdot 12+16 \cdot 9
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

(4) Based on part (3), formulate a general principle by filling the blanks below:

For any vector spaces V and W, the projection matrices have the property that

$$
P_{V} P_{W} \text { and } P_{W} P_{V} \text { are__ } 0 \text { if } V \text { and } W \text { are orthogonal }
$$

After formulating the principle above, justify it using a geometric argument (i.e. using the geometric interpretation of projections).

Solution: Taking the matrix $P_{V} P_{W}$ and multiplying it with any vector \mathbf{b} means the same thing as projecting \mathbf{b} onto the vector space W (this is the operation $\mathbf{b} \rightsquigarrow P_{W} \mathbf{b}$) and then projecting the result onto the vector space V (this is the operation $P_{W} \mathbf{b} \rightsquigarrow P_{V} P_{W} \mathbf{b}$). But if V and W are orthogonal to each other, then this sequence of two operations should give 0 .

